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Abstract. The paper studies the size dependence of the surface tension at a weakly 
curved liquid-vapor interface. Statistical expressions for the first and the second 
correction to the surface tension are derived with the use of expansion of the first of the 
equations of the hierarchy of Born-Green-Yvon into a series in terms of the curvature of 
the dividing surface. A method of approximate evaluation of the second correction by 
information on the properties of a planar liquid-vapor interface is suggested. 
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Introduction 

 
The problem of dependence of the surface tension σ  of vapor bubbles and liquid 

droplets on the radius of curvature of the dividing surface R  is the subject of numerous 
theoretical [1 – 6] and experimental [7 – 10] investigations. The variety of approaches 
and methods has not yet yielded unanimity even in concepts of the qualitative character 
of this dependence. For an interface curved sufficiently weakly the size dependence of 
the surface tension may be presented as follows [4] 

    ( ) 2
0 0

ˆ, 2J K kC J kJ k Kσ σ= + + +  .   (1) 

where 0σ  is the surface tension of a planar interface, 0C  is the spontaneous curvature, 

k  is the rigidity constant of bending and k̂  is the rigidity constant associated with the 
Gaussian curvature, x yJ c c= +  is the total curvature, and x yK c c=  is the Gaussian 

curvature. 
A peculiar role in physics of surface phenomena is played by spherically symmetric 

surfaces. Since a sphere has the smallest area at a given volume, it is the equilibrium 
form for a gas bubble or a liquid droplet surrounded by some other fluid phase. 
Spherical symmetry is characteristic of critical nuclei from which the phase transition of 
the first kind starts in isotropic systems. In connection with the great significance of 
spherical surfaces we will restrict our consideration in this paper just to this case. For a 
spherical interface 1x yc c c R= = =  (following Blokhuis and Bedeaux we will take R  

to mean the radius of an equimolar dividing surface), and consequently, 2J R= , 
21K R= , and Expression (1) reduces to 

   ( ) 2
0 1 2 1 0 2

ˆ, 2 , 2R R R kC k kσ σ σ σ σ σ= + + = = +  . 

Thermodynamic analysis of the size dependence of the surface tension in the case of 
a spherical surface leads to the well-known differential equation [11] 
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which makes it possible to relate corrections to the surface tension with Tolman’s length 
     *R Rδ = −  
where the subscript “ * ”  denotes the quantities pertaining to the surface tension. The 
latter is determined by Laplace’s equation 
      * *2 ,p p Rα β σ− =  

where p  is the pressure, the subscript “ α ”  refers to the inner phase with respect to the 
curved surface, “ β ”  to the other one. According to Expression (2) 

    ( )2
1 0 0 2 0 0 12 , 2 ,σ σ δ σ σ δ δ= − = −    (3) 

where 0δ  and 1δ  are the coefficients of expansion of the Tolman’s length in terms of 

curvature 
     0 1 .Rδ δ δ= + + 
  

Any further determination of the Tolman’s length and corrections to the surface tension 
is beyond the scope of purely phenomenological consideration and requires a statistical 
approach. 

Recently, by calculating the increment of the canonical partition function of a two-
phase system with a curved interface caused by two independent deformations, 
Blokhuis and Bedeaux [4] managed to obtain expressions relating curvature corrections 
to the surface tension with the intermolecular potential ( )rφ  and the pair density of the 

interface. In the context of the approach suggested by them the authors [4] obtained for 
the surface tension of a planar interface 0σ  the well-known result of Kirkwood and Buff 

[12] 

  ( ) ( ) ( )2 (2)
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1
' 1 3 , , ,

4
dz d r r r s z z rσ φ ρ= −
� � �

   (4) 

for the first curvature correction on a spherical surface 1σ  two equivalent expressions 
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dz d r r r s z z z z rσ φ ρ= − +
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  (5) 
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and for the second correction 2σ  relations 
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In the expressions presented the values of coordinates z  are counted off from the 
position ez  of the equimolar dividing surface, 12r r= � , (2)

iρ  are the coefficients of 

expansion of the pair density of the curved interface 
  ( ) ( ) ( ) ( )(2) (2) (2) (2) 2

1 2 0 1 2 1 1 2 2 1 2, , , , , , , ,r r z z r z z r R z z r Rρ ρ ρ ρ= + + +��� �   (9) 

the product sr  is the projection of the vector 12r�  on the direction of the vector 1r� . 



The results obtained by Blokhuis and Bedeaux enabled one for the first time to 
calculate rigorously the value of the first correction 1σ  to the surface tension in the 
Lennard–Jones fluid [13, 14]. As is shown by these rigorous calculations, and also by 
earlier evaluations in the framework of the method of the density functional [15] or the 
van der Waals capillarity theory [6], the absolute value of the parameter 0δ  determining 

according to (3) the value of 1σ  is only tenth fractions of the molecular diameter. 

Rigorous calculation of the second correction 2σ  by formulae (7), (8) is hampered by 
the fact that for their use information on the properties of a planar liquid-vapor interface 
is not sufficient, and some extremely cumbersome and problematic numerical 
experiments [14] on simulation of curved surfaces are required. The result obtained in 
this case proves to be comparable with its error. At the same time, owing to the 
extremely infinitesimal value of the first correction information on the value of 2σ  may 
turn out to be necessary for correct description of the surface tension even for 
sufficiently weakly curved interfaces. Thus for instance, as is shown by investigations 
[6, 16, 17], the value of the second correction to the surface tension is necessary and 
sufficient for correct interpretation of experiments on the boiling-up kinetics of pure 
fluids and their solutions in the framework of the homogeneous nucleation theory. In 
this connection the search for alternative expressions for the second correction becomes 
highly topical. To solve this problem we use the first of the equations of the BGY 
hierarchy. 

 
Expansion of the First of the Equations of the BGY Hierarchy in 
Terms of Curvature 
 
In the general case the first of the equations of the BGY hierarchy (Born–Green–

Yvon) [11] will look like: 

    ( ) ( ) ( )(2)12
2 1 2

12

1
' , .

B

r
r d r r r r

k T r
ρ φ ρ∇ = � �� � ���

   (10) 

As applied to a spherically symmetric system this equation reduces to 
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r
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r k T

ρ π φ ρ
∞
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∂
=

∂ � �    (11) 

where 12coss θ= , 12θ  is the angle between 1r
�

 and 12r
�

, 1r  and 2r  are the distances from 
the first and the second particles to the center of the sphere. 

Now, by assuming the surface curvature to be weak and the expansion (9) to be 
legitimate, we will expand the written equation into a series in terms of curvature 
keeping the terms up to the 3-order infinitesimal ( 3R−� ). This expansion is similar to 
the expansions of integrals described by Blokhuis and Bedeaux in Appendix A of ref. 
[4]. 

The value of 2 2r r=
�

 is determined by the values of 1r , s  and r : 

     2 2
2 1 12 ,r r r sr r= + +  

whence up to the terms of the third order in terms of ( )1r r  we have 
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Now we expand the function ( )(2)
1 2, ,r r rρ  in the vicinity of ( )(2)

1 1, ,r r sr rρ +  

  ( ) ( ) ( ) ( )
2 32 3

(2) (2)
1 2 1 12 2 3 3

1 1
, , 1 , , .

2 6

r rr
r r r r r sr r

r s r s r s
ρ ρ

� �
∆ ∆∆ ∂ ∂ ∂= + + + +

� �
∂ ∂ ∂

� �� �  

By substituting the written expansions into (11) we have 
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Integrating by parts the term that contains the third derivative with respect to s  we 
obtain 

( ) ( ) ( )

( ) ( )

1 2 2
1 2 2
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Integrating similarly the term with the second derivative with respect to s  we come to 
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It should be noted that despite the disappearance in the last expression of the terms 

proportional to ( )3

1r r  calculations are made with an accuracy of the third order. At last, 

by performing the last integration by parts, we finally obtain 
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Let us denote the distance from the point 1r!  to the dividing surface R  along the normal 

by 1 1z r R= − . Passing now from the expansion in terms of 11 r  to the expansion in 

terms of 1 R : 
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we transform Relation (12) to 
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It should be mentioned that in the expression presented the pair density 

( )(2)
1 1, ,r r sr rρ +  and the particle density ( )1rρ  are the functions of distribution of a 

curved interface and characterize the distribution of particles at the points located at 
distances 1z  and 1z sr+  along the normal from the equimolar surface. Just as the 



surface tension at a curved surface may differ from its planar limit 0σ , the functions 
(2)ρ  and ( )1rρ  may differ from the corresponding functions of a planar interface. By 

using Expansion (9) for the pair density and a similar expansion for the particle density 
   ( ) ( ) ( ) ( ) 2

1 0 1 1 1 2 1 ,r z z R z Rρ ρ ρ ρ= + + + �     (14) 

we obtain in Relation (13) in the zero order in terms of ( )1 R : 

   
( ) ( ) ( )0 1 (2)

0 1 1
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z
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z

ρ
φ ρ

∂
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∂ �
�

    (15) 

in the first order 
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in the second order 
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and in the third order 
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If Eq. (15) is nothing but Equation of BGY (10) written as applied to a planar interface, 
the deduced equations (16) – (18) are new relations which relate to each other different 
coefficients of expansions of the pair (9) and the particle (14) densities. In the next part 
we shall use these relations to derive statistical expressions for the first and the second 
curvature correction to the surface tension. 
 

Application of the Relation Obtained to the Problem of Size 
Dependence of the Sur face Tension 

 
Integration of the obtained relations (15) – (18) with respect to 1z  from the point zα , 

where the homogeneity of the phase α  is achieved, to the corresponding point zβ  in the 

second phase gives 
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    (22) 

In deriving (19) – (22) use was made of the transformation of integrals 0,iL  (see 

Appendix, Eqs. (32), (33)) 

   ( ) ( ) ( ) ( )(2) (2) (2)
0, 1 , ,

1
' ' .

6

z

i i i i

z

L dz d r r s d r r r r r
β

α

α βφ ρ φ ρ ρ
� �
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Next it should be noted that according to the statistical determination of pressure in 
a homogeneous fluid 

   ( ) ( ) ( )(2)1
'

6Bp k T d r r r rρ ρ φ ρ= − � �      (23) 

the coefficients of expansion of the pressure difference ( )p pα β−  are written at the left 

of Eqs. (19 – (22) 

  ( ) ( ) ( ) 2

0 1 2
.p p p p p p R p p Rα β α β α β α β− = − + − + − + �   (24) 

On the other hand, the pressure difference in coexistent phases is connected with the 
surface tension through Laplace’s equation, which for an equimolar dividing surface 
takes the form: 

   0 1
2 3

22 0
,

d
p p

R dR R R Rα β
σσ σ σ

� �
− = + = + +� �� �      (25) 

where the well-known [11] equality of derivatives is used 
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When using (23), (24) and (25) we see that Expression (19) reduces to the equality of 
pressures above a planar interface, and Expressions (20) – (22) yield 
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where the following designations are introduced: 
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The first of the obtained relations leads us to the well-known virial expression of 
Kirkwood and Buff (4). In the second expression, when transforming the last integral 
according to (see Appendix, Eqs. (32), (33)) 
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we see that it is a combination of the expressions (5) and (6) for the coefficient 1σ . 
The last of the obtained expressions (26) does not contain any information on the 

second correction to the surface tension as the terms of the third order in Relation (25) 
cancel out, but it contains the same integrals as Eqs. (7), (8), which determine the value 
of 2σ . By subtracting (8) from (7) we come to 
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Comparison of the last relation with (26) with allowance for the transformation of 
integrals (Appendix, Eqs. (34), (35)) shows that Relation (26) is in complete agreement 
with statistical expressions for the second curvature correction to the surface tension. 
Hence the obtained result (26) may be regarded as confirmation of the equivalency of 
Eqs. (7) and (8). 

Besides the confirmation of statistical expressions (4) – (8) Relations (16) – (18) 
derived in the previous part may be used for obtaining additional information on the 
integrals determining the second correction 2σ . For further analysis we shall expand 
into a series in terms of the curvature of the dividing surface the relation determining 
the equimolar radius 
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Using (14) and passing on to the variable z r R= − , we have 
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By assembling the terms at the same degrees of ( )1 R  in the zero order we obtain the 

determination of the equimolar surface at a planar interface 
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and in the second order 
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With allowance for the relations obtained it can be shown that additional multiplication 
of Eq. (15) by 1z  and integration give 
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and Eq. (17) to 
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A relation for the second integral in the left side of Eq. (29) will be obtained by 
additional multiplication of Eq.(16) by 2

1z  and integration 
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� � � � �
� �

 

The last two relations make it possible to write for the integral 1J  

 ( ) ( )2 2 (2) 3 0
1 1 1 0 1 2

2
' 1 2 2 ,

3

z

B

z

d
J z dz d r r r s s k T z dz I I

dz

β

α

ρφ ρ � �= − − + + +� �
	 


� � �
�

   (30) 

where 

  ( ) ( )2 (2) (2)
1 1 1 1 2 1 1 2' , ' .

z z

z z

I z dz d r r s I z dz d r r s
β β

α α

φ ρ φ ρ= =� � � �
� �

 

The relation obtained for the integral 1J  determines the alternative means of calculating 
the second correction to surface tension. Combining (7), (30) with allowance for 
transformation of (32), (33) we get 

  
( ) ( )

( )

2 2 (2) 3 0
2 1 1 0

3 (2) (2)
,1 ,1 1 2

1 1
' 1

4 6
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z
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d
z dz d r r r s s k T z dz
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d r r r I I

β

α

α β

ρσ φ ρ

φ ρ ρ

� �= − − + � �
	 


� �+ − + +� �

� � �

�

�

�
   (31) 



This expression, of course, is not simpler for calculating the second correction 2σ  than 

Expressions (7) and (8), but on its basis a new approximate evaluation of 2σ  may be 
suggested. 

Relation (27) obtained earlier makes it possible to assume that the integrals 1I  and 

2I  make a small contribution to Expression (31). If they are neglected, all the remaining 
terms in (31) may be determined on the basis of numerical experiments on simulation of 
two-phase systems with a planar interface and one-phase systems. Thus, for instance, 
the functions (2)

,1αρ , (2)
,1βρ  determining the rate of change of the pair density in 

homogeneous phases may be expressed through the coefficients of expansion (14) for 
the particle density 

   
(2) (2)

(2) (2)1 1
,1 ,0 ,1 ,0

, ,

, ,
s s

d d

d dα α β β
α α

ρ ρρ ρ ρ ρ
ρ ρ

� � � �

= =
� � � �
� � � �  

where the subscript “ s ”  denotes the state of equilibrium coexistence of phases 
(binodal). In their turn, the coefficients ,1αρ , ,1βρ  are determined by the system of 

equations 
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the first of which follows from the condition of equality for the chemical potentials of 
phases, and the second from Laplace’s equation (25). 

Of course, generalization of the result (27) to the integrals 1I  and 2I  is no more than 
an assumption. Another assumption of the same kind for approximate evaluation of the 
second correction to the surface tension was made by Blokhuis and Bedeaux [4]. 
However, as distinct from the hypothesis adopted in Ref. [4], the legitimacy of our 
assumption may be checked indirectly owing to Relation (28). This relation contains an 
integral (the first on the right) of the intermediate type between the integral of 
Expression (27) and the integrals 1I  and 2I . Rigorous calculation in simulating the 
planar interfacial layer of the remaining terms in (28) will make it possible either to rule 
out or to indirectly confirm the above assumption. 

 
Conclusion 

 
The expansion of the first of the equations of the BGY hierarchy in terms of 

curvature has been studied in the framework of the investigation performed. A number 
of relations have been obtained for connecting the expansion coefficients of one- and 
two-particle distribution functions of an interfacial layer. These relations are used for 
analyzing the size dependence of the surface tension σ . It is shown that they are in 
complete agreement with the statistical expressions recently obtained for the first and 
the second curvature correction to σ . A new statistical expression for the second 
correction to the surface tension has been obtained. A method for approximate 
evaluation of the second correction on the basis of numerical experiments on simulation 
of two-phase system with a planar interface and one-phase system has been suggested. 
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Appindix 
 

When relations (15) – (16) are integrated with respect to 1z , the first integrals on the 
right take the form: 

   ( ) ( ) ( )(2)
0, 1 1 1, , ,

z

i r s i

z

L dz d r f r f s z z sr r
β

α

ρ= +� � �     (32) 

where ( )rf r  is an arbitrary function, ( )sf s  is an odd function s , i.e. ( ) ( )s sf s f s− = − , 
(2)
iρ  is one of the expansion functions (9). For the first time a correct method of 

calculating an integral similar to (32) was demonstrated by Henderson [18]. On account 
of the odd character of the function ( )sf s , addition to the integrand of a constant has no 

effect on the value of the integral, and we can present integral (32) as follows: 

  ( ) ( ) ( ) ( )
1

2 (2) (2)
0, 1 1 1 , 1

0 1

2 , , , ,
z

i r s i i e

z

L f r r dr dz ds f s z z sr r z z
β

α

αβπ ρ ρ
∞

−

� �= + −� �� � �  

where (2) (2)
, ,i iαβ αρ ρ=  at 1 ez z< , and (2) (2)

, ,i iαβ βρ ρ=  at 1 ez z> . It is not difficult to notice that 

the pairs of particles for which 1 0z <  and 2 0z <  (or , on the contrary, 1 0z >  and 

2 0z > ) give no contribution to the integral in view of ( ) ( )(2) (2)
1 2 2 1, , , ,i iz z r z z rρ ρ= . By 

keeping the pairs whose particles are on different sides of the dividing surface we obtain 

    ( ) ( ) ( )
0 1 0

2 (2) (2) (2) (2)
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2 ,
sr

i r s i i s i i
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∞ −

− −

� �
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� �
� � � � �  

In the last expression the terms that contain the function ( )(2)
1 1, ,i z z sr rρ +  cancel too, 

and after some simple transformations we come to the desired result 

   ( ) ( ) ( ) ( )(2) (2)
0, , ,

1
.

2i r s i iL d r f r r f s s r rα βρ ρ� �= − −� ��
�

   (33) 

where at a given form of the function ( )sf s  integration with respect to s  may be 

fulfilled. Thus, all the integrals 0,iL  may be determined by the properties of 

homogeneous phases (2)
,iαρ  and (2)

,iβρ  in the vicinity of their equilibrium coexistence 

(binodal). 
Now we shall snow the transformation of integral of the following type: 

   ( ) ( ) ( )(2)
1, 1 1 1 1, , .

z

i r s i

z
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β
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    (34) 

Using the relation 
     ( )1 1 2 2 2 ,z z z sr= + −  

we shall present (34) in the form of the sum of two integrals 
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By transforming the second integral on the right in the same way as (32) it is not 
difficult to show that it is equal to zero. Thus, 

  ( ) ( ) ( )(2) (2)
1, 1 1 1 ,

1
, , .

2

z

i r s i i

z

L dz dr f r r f s s z z sr r
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   (35) 
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